
CRANFIELD UNIVERSITY

KESTER BROATCH

LEARNING VEHICLE DYNAMICS MODELS BY
SELF-SUPERVISED LEARNING

SCHOOL OF AEROSPACE, TRANSPORT AND
MANUFACTURING

Autonomous Vehicle Dynamics and Control

MSc
Academic Year: 2019–2020

Supervisors: Dr Dmitry Ignatyev, Dr Argyrios Zolotas,
Jeremy Baxter (Qinetiq)

August 2020

Abstract

Mobile robots are increasingly being utilised in unstructured and off-road environments

which they have no prior knowledge of. Thus, when planning trajectories or tasks it is

important that the robots can make accurate and robust forward predictions about how the

vehicle will interact with that terrain.

This project proposes a self-supervised learning architecture which samples and learns the

vehicle and terrain relationship from experience, and can adapt as new data is collected.

To create the training data the system assigns a ’traversal’ score to the vehicle dynamics

data which is mapped onto terrain images from a previous point in time. It is shown that

this data can be used to train a neural network which can predict future vehicle behaviour,

and can be easily integrated with navigation algorithms such as path planning.

In addition, a simulation environment is proposed which can be used to pre-train the

network using real images and simulated vehicle behaviour in an attempt to reduce the

training demand placed upon real self-supervised robots which are deployed in the field.

ii

Acknowledgements

I’d like to take this opportunity to thank some of the kind people who helped me through-
out this project.

Firstly, I’d like to thank my advisors Dr Dmitry Ignatyev and Dr Argyrios Zolotas who’s
generous guidance and teaching has helped me grow throughout my studies.

I’d also like to thank Jeremy Baxter from Qinetiq who suggested this interesting project,
his insights and breadth knowledge on the subject proved invaluable.

Lastly, I’d like to thank my friends and family who supported my move to Cranfield. New
friendships were made and old friendships strengthened.

iii

Contents

List of Figures vi

List of Tables viii

Abbreviations ix

Notation x

1 Introduction 1

1.1 Background and Motivation . 2

1.2 Aims and Objectives . 2

1.3 Contribution . 3

1.4 Outline of Thesis . 4

2 Literary Review 6

2.1 Traversability Models . 6

2.2 Self Supervised Learning . 8

2.3 Learning from Simulation . 9

3 Approach 10

3.1 Traversability Prediction Method . 10

3.2 Data Collection Method . 11

3.3 Learning Architecture . 11

4 Traversal Simulation 13

4.1 Terrain Generation . 13

4.2 Vehicle Model . 17

4.3 Simulation Setup . 18

iv

CONTENTS v

4.4 Friction Model . 20

4.5 Simulation Runs . 21

5 Traversal Data Generation 22

5.1 Cleaning the Simulation Data . 22

5.2 Calculating Vehicle Slip . 23

5.3 Extracting Terrain Slope . 25

5.4 Terrain Patch Labelling . 25

5.5 Artificial Labels . 28

6 Learning Traversability 30

6.1 Network Design . 30

6.2 Training . 31

6.3 Addressing Over Fitting . 33

6.4 Patch size tuning . 34

7 Results and Discussion 36

7.1 Uniform Friction Terrain . 36

7.2 Variable Friction Terrain . 38

7.3 CNN Performance . 40

7.4 Path Planning Example . 41

8 Conclusions and Future Work 42

8.1 Conclusions . 42

8.2 Limitations and Future Work . 43

References 47

List of Figures

3.1 Self-supervised traversability learning architecture 12

4.1 Freiburg Forest data set (Valada et al., 2016) sample - RGB, Depth and
Ground Truth images . 14

4.2 Simplified depth image showing pixel positions and example depth values
at those pixels . 15

4.3 Terrain point cloud generated from a depth image 16

4.4 Terrain model raw mesh (left) and smoothed mesh(right) 16

4.5 Examples of terrain meshes . 17

4.6 Pioneer 3at robots in use (left) (ROS-wiki, 2017) and rendered in Gazebo
(right) . 18

4.7 Terrain spawning in a grid pattern moving away from camera position(left),
example of traversal of vehicle over terrain mesh in the gazebo simulator
(right) . 19

4.8 Vehicle traversal path (dark blue) projected back onto the original image . 19

4.9 Traversal paths (dark blue) projected back onto terrain ground truth image
(left) and examples of terrain friction values(right) 20

5.1 Example of raw and down-sampled simulation results, showing robot z
orientation . 23

5.2 Example of vehicle slip - low slip values while travelling over road and
high slip values while travelling over grass and rough terrain 25

5.3 Example of the traversability labels which have been mapped back onto
the terrain images (shown is labels for a uniform friction simulation) . . . 26

vi

LIST OF FIGURES vii

5.4 Image patches are cropped from the terrain RGB and depth images for
every labelled data point . 27

5.5 Edge patches were warped by extruding the edge pixels, this ensured that
the border of the image could be classified 27

5.6 Example of a mis-classified patch and it’s intensity histogram 28

5.7 Comparison of intensity histograms of a mis-classified image patch and
some semantically similar but correctly classified patches. 28

5.8 Artificial labels added to the training data to increase the representation
of tree and sky image patches . 29

6.1 Covolutional Neural Network architecture 31

6.2 CNN training loss and accuracy . 32

6.3 Over fitting CNN training loss and accuracy 33

6.4 Training patches (cropped from terrain images) size comparison 34

7.1 Traversal prediction results of CNN trained with simulation data for uni-
form friction . 37

7.2 Traversal prediction results of CNN trained with simulation data with fric-
tion varied across the terrain . 39

7.3 Dijkstra path planning algorithm with terrain traversability used as weight-
ings between the graphs nodes. 41

List of Tables

5.1 Traversability thresholds used for labelling simulation data 26

7.1 Terrain friction coefficient values used in the simulation 38

viii

Abbreviations

BAGDR Berkeley Autonomous Driving Ground Robot

CNN Convolutional Neural Network

Conv2D 2D convolution layer

DARPA Defence Advanced Research Projects Agency

FoV Field of View

GPU Graphics Processing Unit

IMU Inertial Measurement Unit

LAGR Learning Applied to Ground Robots

NASA National Aeronautics and Space Administration

ODE Open Dynamics Engine

ReLU Rectified Linear Unit

RGB Red Green Blue

ROAMS Rover Analysis, Modelling and Simulation

ROS Robot Operating System

SLAM Simultaneous Localization And Mapping

TPU Tensor Processing Unit

ix

Notation

α Rotation angle of robot about x axis

β Rotation angle of robot about y axis

depth Depth image’s greyscale pixel value(between 0-255)

FoV Camera constant describing the cameras field of view

γ Rotation angle of robot about z axis

µ Friction coefficient

R Robot’s rotational matrix with respect to the world frame

Rx, Ry, Rz Robot’s rotational matrices about the x,y and z world frame axes

scale Camera constant which scales the depth image size to real size

~slip Ratio between the robot’s actual velocity and the ideal velocity

~Vactual Robot’s velocity vector

~Vdi f f Difference between the robot’s actual velocity and the ideal velocity

~Videal Robot’s ideal velocity vector (travelling over flat and level ground)

vx, vy, vy Robot’s xyz velocity components in the world frame

x x position in camera coordinate frame (left-right in image)

Xpix Horrizontal pixel position on image

y y position in camera coordinate frame (in-out in image)

z y position in camera coordinate frame (up-down in image)

Zpix Horrizontal pixel position on image

x

Chapter 1

Introduction

The robotics industry is in a period of flux in which their use cases are expanding beyond

their origins in the structured environment of factory floors. Agriculture, health care,

mining, planetary exploration and self driving cars are just a few examples. This new

generation of robots are required to navigate in unstructured and dynamic environments

if they are to perform effectively and safely.

In practice many modern robots perform rather poorly when a novel terrain is encountered

and cannot effectively adapt their navigation plan. A well known example of this was

when the NASA Mars rover ’Spirit’ became trapped in a sand pit and had to end its

mission (NASA, 2010) due to a poor wheel slip prediction over the martian terrain. The

increased use of robots in all types of terrain (unstructured or structured) highlights the

requirement for robust vehicle-terrain models which can deal with complex and dynamic

scenarios.

1

CHAPTER 1. INTRODUCTION 2

1.1 Background and Motivation

Terrain ’traversability’ assessment is the methodology which is primarily used by agents

that are attempting to traverse some complex environment. This involves combining some

knowledge about the terrain with some knowledge about the vehicle’s own dynamics to

make a prediction of the forward vehicle-terrain interaction. This prediction can then be

used for things like path planning or danger avoidance.

It was found in literature that there is a large focus on the terrain models, and very little

towards the vehicle models that are used in current traversability frameworks (based on

a survey by Papadakis, 2013). This means that many of the systems out there work well

for a confined set of vehicle-terrain interactions, but quickly break down for more novel

interactions (of which there are many).

When considering the shear number of possible vehicle-terrain interactions it is not sur-

prising then that this area of research is underrepresented using classic navigation meth-

ods, and no general solution exists. However, in recent years, machine learning methods

may have provided a viable solution to tackle this issue. Machine learning offers tools that

can deal with the extremely large variable sets involved in vehicle-terrain models, and has

the added option of learning on the fly which allows adaption to one’s environment.

1.2 Aims and Objectives

This project aims to create a framework which can sample and learn vehicle-terrain inter-

actions from experience in a self supervised manor and use the predictions for smart path

planning. This general objective can be synthesised as:

1. Collection and labelling of terrain imagery and vehicle dynamics data in a self-

supervised fashion.

CHAPTER 1. INTRODUCTION 3

2. Formulation of meaningful traversal knowledge from the raw terrain and vehicle

data using a terrain ’traversability’ score.

3. Development of a machine learning architecture which learns the relationship be-

tween terrain imagery and traversal data.

4. Create a simulation environment which provides reasonably accurate traversal data

for the purpose of network pre-training.

5. Investigation of the learning architecture’s performance and shortcomings when

applied to the simulation environment. Discussion of future avenues of work.

6. Integration of the traversability prediction framework with a path planning algo-

rithm.

1.3 Contribution

In this project we take steps towards a fully self-supervised system which can learn

vehicle-terrain interactions from experience.

Firstly, a ’traversability’ criterion was proposed which extracted useful traversal knowl-

edge from raw vehicle-terrain interaction data. This traversal data was mapped onto ter-

rain images to construct a large neural network training set. Following this, a neural

network was developed which learned the relationship between the traversal data and the

terrain images. This network was used to predict future vehicle-terrain interactions, and

was deployed in a path planning algorithm which could account for the traversability of

the terrain.

Further to this, a training simulation environment was developed with the intention of

pre-training models to be used later used as starting model on self-supervised robotics

platforms. This simulator differed from most virtual training environments as it used real

CHAPTER 1. INTRODUCTION 4

terrain images along with simulated vehicle dynamics to train the neural network. This

allows the bulk of a robot’s learning to be carried out in the safety of simulation, but also

reduced some of the issues with training using rendered images from simulation.

1.4 Outline of Thesis

This thesis is divided into eight chapters, organised roughly to follow the order in which

the work was carried out:

Chapter 1, Introduction - States the general background of terrain traversabil-

ity methods and the current challenges. Outlines the objectives of the author, the

methodology adopted to achieve them, and the main contributions of the project.

Chapter 2, Literary Review - Summarises the current state of the art of robot ter-

rain traversal methods. Promising avenues of work are analysed, and the observed

strengths and limitations are presented, along with their wider dependencies on new

technology.

Chapter 3, Approach - Gives an overview of the traversability prediction and data

collection methods that were chosen for the project, based upon the project objec-

tives and the literary review.

Chapter 4, Traversal Simulation - Description of the steps taken to generate the

terrain model and vehicle simulations using the DeepScene (Valada et al., 2016)

dataset.

Chapter 5, Traversal Data Generation - Outlines the process in which terrain

traversability data was extracted from the raw simulation data and converted into

training data for the neural network.

CHAPTER 1. INTRODUCTION 5

Chapter 6, Learning Traversability - Details the design and tuning of a convolu-

tional neural network which was trained using the terrain traversal data.

Chapter 7, Results and Discussion - Details the output and performance of the

traversal learning architecture.

Chapter 8, Conclusions and Future Work - Discusses the performance of the

architecture with reference to the origial objectives of the project. The limitations

of the architecture are acknowledged and used to outline suggestions for future

work.

Chapter 2

Literary Review

This chapter gives some background information about terrain traversal methods for au-

tonomous vehicles. In addition, the current state of the technology is presented; detailing

some of the largest challenges and advancements currently taking place.

2.1 Traversability Models

The definition of terrain ’traversability’ often differs between authors, but in general refers

to the ability of a ground vehicle to reside over a terrain region in an acceptable state con-

sidering its current state (definition from Papadakis, 2013). In almost all cases traversabil-

ity is some function of the terrain and the constraints of the vehicle.

Intelligent agents (robot or biological) make forward traversability predictions of their

environment by estimating the interaction behaviour of some predicted terrain model and

internalised vehicle model. The estimated traversability model can then be used for tasks

such as path planning, danger avoidance or decision making.

6

CHAPTER 2. LITERARY REVIEW 7

2.1.1 Geometry Based Models

Classical methods of traversability analysis were very heavily weighted towards geomet-

ric terrain models. The main types of terrain models were elevation maps, originating

from the grid based methods using sonar developed by Moravec and Elfes, 1985, which

proved to be very popular for graph based path planning. These methods remain pop-

ular today with the increasing use of lidar and point cloud data (see Jaillet, Cortés, and

Siméon, 2010). The issue with these models is that they only consider spatial terrain

representation and typically neglect or use very simplistic vehicle representations.

2.1.2 Appearance Based Models

The recent availability of high performance image classifiers has seen an increase in ap-

pearance based traversability models. These models can be used to extract characteristics

such as terrain type, roughness, slope and slip (Ayanna Howard and Seraji, 2001) from

terrain images. These appearance based models can be combined with the geometric

models to produce highly accurate terrain representations, for example Maturana et al.,

2018. However, the same issue persists as before; no vehicle information is necessarily

considered with this approach, so they are limited in accuracy.

2.1.3 Proprioceptive Based Models

The last type of traversability model is the use of ’proprioceptive’ sensors to measure

the vehicles internal stimulus to gain knowledge about the vehicle and terrain. For in-

stance, Garcia Bermudez et al., 2012 used IMU vibration and Leppanen, Virekoski, and

Halme, 2008 used feet strain forces for terrain classification. These methods provide

useful knowledge about the vehicle model and it’s constraints, but are limited in their

knowledge about the terrain which is not directly below the vehicle.

CHAPTER 2. LITERARY REVIEW 8

2.1.4 Hybrid Models

The issue with the methods above is that they are generally limited in scope, so they can

be significantly improved when they are combined into a hybrid model. Proprioceptive

terrain models can be combined with exteroceptive models (external stimulus) to fuse

vehicle and terrain knowledge. However, using classical navigation methods to combine

these models was not practical in most cases as there is a huge number of combinations

which would have to be accounted for to make the model more general. However, the

recent rise in machine learning methods has provided tools which can deal with these

large data sets, and has provided some very promising results in recent years.

One of the largest influences in this area was DARPA’s Learning Applied to Ground

Robots (LAGR) program (Jackel et al., 2006) which provided a platform which researchers

could easily create hybrid traversability models from (see Shneier et al., 2008 and Andrew

Howard et al., 2006). The research gained from the LAGR program was later used in the

NASA Mars Rover programs to develop a system which learns the relationship between

vehicle slip, vibration and terrain images (see Angelova et al., 2007 and Otsu et al., 2016).

2.2 Self Supervised Learning

The functionality of machine learned hybrid traversability models was expanded further

with the idea of ’self-supervised’ learning. This is where robots collect data and learn

from experience without any human supervision, which allows vehicles to adapt to the

terrain that they are currently traversing. The use of modern machine learning techniques

and powerful on-board computers has allowed the relationship between proprioceptive

vehicle models and exteroceptive terrain models to be sampled and learned in real time

while the vehicle is in operation.

CHAPTER 2. LITERARY REVIEW 9

A number of very promising self-supervised systems have been explored in recent years.

Wellhausen et al., 2019 developed a system for a legged robot which learns the rela-

tionship between foot slip and terrain images during human controlled locomotion, this

knowledge is then used to plan future autonomous routes which minimise slip under-foot.

Kahn, Abbeel, and Levine, 2020 take this a step further with their BAGDR system which

autonomously explores and learns its environment with no human intervention required.

2.3 Learning from Simulation

One of the issues with self-supervised learning is the fact that learning must occur from

experience, which can be very expensive. A vehicle learning from scratch may have

to deal with crashes and tipping over before it learns enough to avoid these failures. It

would therefore be desirable to pre-train a system using a simulation environment, which

can then be used to initiate learning on a real vehicle (Cole et al., 2019).

Recent advancements in simulation software and gaming engines have provided a host of

tools which can assist with simulation based learning techniques (Rosique et al., 2019).

High fidelity physics engines, cutting edge graphics and accurate sensor models are help-

ing to close the simulation reality gap (Jakobi, Husbands, and Harvey, 1995).

As with the Traversability Models mentioned above, NASA has been at the forefront of

vehicle-terrain simulation research. Their ’ROAMS’ simulator (Jain et al., 2004) accu-

rately predicts vehicle behaviour over soft and unstructured martian terrain. This simu-

lator was successfully used to assist in the training of a self-supervised terrain classifier

(Helmick, Angelova, and Matthies, 2009) for the Mars rover projects. Another robot sim-

ulator, Gazebo (Koenig and Andrew Howard, 2004), was used by Chavez-Garcia et al.,

2017 to learn the interaction of a robot with various height maps from simulations and

was then successfully deployed on the real robot.

Chapter 3

Approach

This chapter gives an overview of the general approach which was settled upon given the

project’s objectives and literary review. The traversal prediction and data collection meth-

ods are detailed, along with their composition into a self-supervised learning architecture.

3.1 Traversability Prediction Method

The vehicle-terrain interaction model was designed to be a hybrid model that combines the

input from terrain geometry (from depth images), terrain appearance (from RGB images)

and vehicle dynamics data. This type of model negates the issues from unbalanced vehicle

and terrain data, as discussed in the Traversability Models part of the Literary Review.

To extract a useful relationship between the terrain and vehicle data it was decided to

use a convolutional neural network (CNN) to learn the relationship between the RGB and

Depth images, and the vehicle data. CNNs are a very good choice for identifying patterns

and features of image data, and the improved performance of on-board computers makes

them well suited for real time robotics applications.

10

CHAPTER 3. APPROACH 11

To make the system adaptable to its environment a self-supervised learning architecture

was adopted. All of the data required to learn the vehicle-terrain interaction was chosen

such that it could be collected and processed on-board the vehicle, without the need for

human supervision.

3.2 Data Collection Method

The architecture is eventually intended for use on real vehicles, but for this project the

data was collected entirely from simulations. Starting in simulation allows the model to

be pre-trained before being deployed in real life, thus reducing the expensive and time

consuming process of training a real self-supervised system from scratch.

The issue with the simulation based pre-training is that there can be a large reality gap

(Jakobi, Husbands, and Harvey, 1995) between the pre-trained model’s prediction and

reality. To minimise the reality gap a real terrain data set (DeepScene Valada et al., 2016)

was used to generate the simulation environments, which allowed the CNN to be trained

with real images rather than rendered graphics images.

3.3 Learning Architecture

The data collection and traversability prediction methods outlined above are combined

into a self-supervised learning architecture (see Figure 3.1). Firstly, in simulation or real

life, the vehicle makes some pass over the terrain. The vehicle dynamics data is col-

lected and used to calculate a traversability score for every vehicle position, which is

then mapped back onto images of the traversed terrain. These images and traversability

scores are used to train the CNN to predict traversability scores for new images. These

predictions can be used for planning and decision making tasks further down the pipeline.

CHAPTER 3. APPROACH 12

Figure 3.1: Self-supervised traversability learning architecture

Chapter 4

Traversal Simulation

This chapter outlines the steps that were taken to create the terrain and vehicle simulations

in the Gazebo simulation environment (Koenig and Andrew Howard, 2004), with the

intention of using the resulting model as pre-training for a real system.

4.1 Terrain Generation

The DeepScene Freiburg Forest data set (Valada et al., 2016) was used to generate ter-

rain models for the traversal simulation. As discussed in the Approach section, the use

of a real data set to generate the terrain simulations allows the CNN to be trained with

real images rather than rendered graphics images, thus improving the pre-trained model’s

performance.

This data set consists of 350 RGB and depth images with labelled terrain classes, and a

further 15,000 unlabelled raw images. A sample from this data set can be observed in

Figure 4.1.

13

CHAPTER 4. TRAVERSAL SIMULATION 14

Figure 4.1: Freiburg Forest data set (Valada et al., 2016) sample - RGB, Depth and Ground
Truth images

4.1.1 Terrain Point Cloud Generation

The first step in extracting the terrain geometry was to obtain the terrain’s 3D point cloud.

To accomplish this the 2D grayscale depth images of the terrain were transformed to 3D

representations by projecting the depth information onto the camera’s reference frame. To

help illustrate this process Figure 4.2 shows a simplified depth image of the terrain. The

pixel values and colour represents the depth of the image at that pixel position, with zero

(black) representing minimum distance from the camera and one (white) representing

maximum distance from the camera.

CHAPTER 4. TRAVERSAL SIMULATION 15

Figure 4.2: Simplified depth image showing pixel positions and example depth values at
those pixels

A 3D point cloud was then extrapolated from the depth image, with the camera position

at the origin of the coordinate system. Each xyz point in the point cloud was calculated

for each corresponding pixel of the depth image using the the conversion equations for a

kinect camera (Bo and Lai, 2014), as seen in equations 4.1 below.

x =
X pix ·depth

FoV
· scale y = depth · scale z =

Zpix ·depth
FoV

· scale (4.1)

The field of view (FoV) and scale constant were unknown as no camera information was

provided with the data set. These were set as 1500 and 1000 respectively after some

experimentation produced a point cloud of reasonable dimensions. However, the value of

these constants is not considered that important as the system should learn any terrain that

is presented to it.

The xyz point cloud which was generated from the depth image from the first example

image from figure 4.1 is shown on Figure 4.3 below.

CHAPTER 4. TRAVERSAL SIMULATION 16

Figure 4.3: Terrain point cloud generated from a depth image

4.1.2 Terrain Mesh Generation

To make the terrain representation usable in the simulation, the point cloud had to be

converted to a 3D mesh. The point cloud was first down sampled by taking the average

point position in a 0.2m grid, which was followed by triangular meshing and smoothing,

as seen in Figure 4.4. This process was carried out automatically using the MeshLab 3D

modelling software (Cignoni et al., 2008).

Figure 4.4: Terrain model raw mesh (left) and smoothed mesh(right)

The smoothed mesh was exported as a Collada file (.dae) as it was found to be the most

stable 3D model type for use in the Gazebo simulation engine. The meshes were found

to represent the terrain reasonably accurately (see Figure 4.5). These meshes were loaded

CHAPTER 4. TRAVERSAL SIMULATION 17

into a gazebo ’world’ file where they could be loaded throughout the simulation.

Figure 4.5: Examples of terrain meshes

4.2 Vehicle Model

The Gazebo simulator with the ODE physics engine (Koenig and Andrew Howard, 2004)

was chosen to simulate the vehicle dynamics and the simulation was controlled and logged

using the ROS communication architecture (Stanford Artificial Intelligence Laboratory et

al., 2018). This setup was used because the Gazebo-ROS combination makes it very

easy to eventually replace the simulator with a real robot. Additionally, the Gazebo-ROS

ecosystem has a strong community with a lot of resources and support.

The Pioneer 3-AT robot was used for the simulations as there are a lot of pre-built gazebo

and ROS models available (ROS-wiki, 2017), and could be easily expanded to the real

system at a future date (see Figure 4.6). The Pioneer 3-AT is a medium sized skid-steer

robot, designed specifically for outdoor exploration and research, so was ideal for this

application.

CHAPTER 4. TRAVERSAL SIMULATION 18

Figure 4.6: Pioneer 3at robots in use (left) (ROS-wiki, 2017) and rendered in Gazebo
(right)

4.3 Simulation Setup

A modified version of an open source gazebo height map simulator, designed by Chavez-

Garcia et al., 2017, was used for the simulation runs. This software was designed to spawn

a robot onto a gazebo elevation map and log its progress over time which provided a good

starting point upon which to build the simulations.

The robot was spawned on the terrain mesh in a grid pattern moving away from the camera

position, see Figure 4.7. This ensures that the model will learn the behaviour of the

vehicle over the terrain which is immediately ahead of it. The vehicle uses a constant

wheel surface speed of 0.5m/s and no steering input which ensures that any change in

direction or speed is caused by the terrain and not by a vehicle controller.

CHAPTER 4. TRAVERSAL SIMULATION 19

Figure 4.7: Terrain spawning in a grid pattern moving away from camera position(left),
example of traversal of vehicle over terrain mesh in the gazebo simulator (right)

The various traversal paths of the vehicle over the terrain mesh are observed by projecting

the 3D paths back onto the original 2D image, see Figure 4.8 below.

Figure 4.8: Vehicle traversal path (dark blue) projected back onto the original image

It should be noted that this method of labelling images assumes that the displacement

between the camera position and the vehicle position is known perfectly, as it is in the

simulator. However, it is likely that a real system will use a single robot which both

records the image and traverses the terrain. A system like this would require some form

CHAPTER 4. TRAVERSAL SIMULATION 20

of SLAM or odometry to map the camera position to the future robot position, and would

therefore incur some inaccuracies.

4.4 Friction Model

The gazebo simulator offers no easy way to vary the friction across an object’s surface, so

the friction of the terrain was instead simulated using a custom plugin (Gazebo-Tutorials,

2015b) which modifies the terrain friction coefficient as the simulation runs. The ODE

physics engine (Gazebo-Tutorials, 2015a) was used to calculate the friction forces in the

simulation. When the robot wheels and the terrain collide the smallest friction coefficient

of the objects is used in the calculation.

The position of the robot on the terrain was projected onto the terrain ground truth image

(as shown in Figure 4.9) for every time step. This allowed the terrain type that the vehicle

was traversing to be found during the simulation, and a corresponding terrain friction to

be applied. The friction plugin can be turned on and off to investigate the effect of terrain

friction on the simulation. When the friction plugin is off the terrain defaults to a friction

coefficient of 1.0.

Figure 4.9: Traversal paths (dark blue) projected back onto terrain ground truth image
(left) and examples of terrain friction values(right)

CHAPTER 4. TRAVERSAL SIMULATION 21

4.5 Simulation Runs

The vehicle position, orientation, velocity and image traversal path (see Figure 4.8) were

logged for every time step of the simulation using ROS and saved to csv files. In total 366

different terrain meshes were traversed, which accounts for 26,000 seconds of simulation

time recorded or 13km of terrain traversed.

Chapter 5

Traversal Data Generation

This chapter outlines the process in which the terrain traversal information is extracted

from the raw simulation data. The data required a fair amount of clean up and pre-

processing to extract the traversal information required to generate decent training data.

5.1 Cleaning the Simulation Data

The vehicle position, orientation and velocity data was collected at 0.01s increments. It

was found that when the vehicle path was projected back onto the terrain image (as seen

in Figure 4.8) for every time step there were a lot of repeated pixel positions, which would

cause many repeated training data points. This not only posed a training over-fitting risk

further down the pipeline, but also added unnecessary computation overhead. To mitigate

this issue the simulation data was down sampled to every 0.5 seconds of simulation. An

example of the down sampling of the vehicle’s angle about the Z axis can be observed on

Figure 5.1.

22

CHAPTER 5. TRAVERSAL DATA GENERATION 23

Figure 5.1: Example of raw and down-sampled simulation results, showing robot z orien-
tation

The simulation data was also found to contain cases where the robot had fallen out of the

map, or had fully flipped over and was stuck on its back. These cases were removed from

the data set as they were false negatives and contained no useful information about the

terrain-vehicle interaction. The first 2 seconds of simulation were also removed as the

vehicle is getting up to speed.

This resulted in a total of 52,000 usable vehicle dynamics data samples which could be

used to label training data.

5.2 Calculating Vehicle Slip

The vehicle slip in lateral and longitudinal directions was used as a measurement criteria

for terrain traversability. In theory any terrain-vehicle interaction behaviour (or combi-

nation of behaviours) could be learned, but vehicle slip was found to be very useful for

our application. The vehicle slip accounts well for the terrain slope and friction as well

as the current vehicle dynamics. Initially only the slip in the longitudinal direction was

considered, but it was found that this limited the scope of the terrain classification, so a

combination of longitudinal and lateral slip was used.

CHAPTER 5. TRAVERSAL DATA GENERATION 24

To calculate the vehicle slip an ideal velocity vector (~Videal) for a vehicle travelling over

flat ground with no slip was compared to the actual velocity vector (~Vactual), where,

~Videal = [0.5,0,0] ~Vactual = [vx,vy,vz] (5.1)

The vehicle rotational matrix R was calculated from the vehicle Euler angles (α , β , γ)

about the global xyz axes.

R = RxRyRz =


1 0 0

0 cosα −sinα

0 sinα cosα




cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ




cosγ −sinγ 0

sinγ cosγ 0

0 0 1

 (5.2)

The ideal velocity vector was then rotated using the rotational matrix to the same direction

as the vehicle velocity vector to allow the velocity difference to be calculated:

~Vdi f f =~Vactual−R×~Videal (5.3)

Lastly, the velocity difference vector was used to find the slip in the x,y and z directions

of the vehicle as follows:

~slip =
~Vdi f f

|~Videal|
(5.4)

The slip vector was then used to gain information about the vehicle-terrain interaction, as

shown in Figure 5.2. A slip vector with nearly zero in all directions represents a vehicle

which is travelling very close to the ideal velocity with little slip. A slip vector with non-

zero x and y values represent a vehicle sliding in the longitudinal and lateral directions

respectively. A slip vector with non-zero z values represent a vehicle ’sinking’ into the

ground, which in practice does not occur in these simulations.

CHAPTER 5. TRAVERSAL DATA GENERATION 25

Figure 5.2: Example of vehicle slip - low slip values while travelling over road and high
slip values while travelling over grass and rough terrain

5.3 Extracting Terrain Slope

The terrain slope was used alongside vehicle slip as a measurement criteria for terrain

traversability. The terrain slope data provided information about regions which did not

necessarily effect vehicle slip but are an important factor in considering terrain traversabilty,

for instance small bumps or transition areas. The vehicle tilt also acted as a reliable thresh-

old for identifying flips or crashes.

5.4 Terrain Patch Labelling

The terrain traversability was calculated at each data point using various thresholds for

vehicle slip, terrain slope and terrain type. If the vehicle was found to be traversing the

trees or sky (see Figure 4.9), or the vehicle tilt was too high then the data point was marked

as ’un-traversable’. If the vehicle slip or tilt was at a moderate or low level then the data

point was labelled as ’slow’ or ’fast’ respectively. The thresholds used in the test cases is

shown in Table 5.1 below.

CHAPTER 5. TRAVERSAL DATA GENERATION 26

Table 5.1: Traversability thresholds used for labelling simulation data

Label Vehicle Slip Terrain Slope Terrain type

fast ≤10% ≤20deg -

slow >10% >20deg -

un-traversable - >90deg Sky or Tree

These traversability labels were then mapped from 3D simulation coordinates back onto

the 2D terrain images, as seen in Figure 5.3.

Figure 5.3: Example of the traversability labels which have been mapped back onto the
terrain images (shown is labels for a uniform friction simulation)

Initial testing divided the labels into two classes, ’traversable’ or ’un-traversable’, but

this was quickly found to have limited use-cases. A third label was added to allow more

detailed terrain prediction which was required for path planning. The architecture was

designed to be easily scaled to use more classes as needed.

CHAPTER 5. TRAVERSAL DATA GENERATION 27

Image patches centred around each traversability label were then cropped from the origi-

nal terrain RGB and depth images, as shown in Figure 5.4 below. These cropped images

were labelled for every point in the simulation data, then saved in a pandas data frame

(Pandas, 2020) for later use as training data for the neural network.

Figure 5.4: Image patches are cropped from the terrain RGB and depth images for every
labelled data point

Cropped patches which overlapped the edge of the image were warped by extruding the

pixel colours on the image edge (as shown in Figure 5.5). This ensured that the entire

terrain image could be classified and the border was not ignored.

Figure 5.5: Edge patches were warped by extruding the edge pixels, this ensured that the
border of the image could be classified

CHAPTER 5. TRAVERSAL DATA GENERATION 28

5.5 Artificial Labels

A number of false positive mis-classifications were observed in the first few model itera-

tions. These mis-classifications occurred predominantly on patches where dark branches

were contrasted against bright sky. To investigate this mis-classification the patch was

transferred to grey scale and the intensity histogram was calculated (see Figure 5.6).

Figure 5.6: Example of a mis-classified patch and it’s intensity histogram.

The histogram above shows that the image has multiple grey scale values with zero sam-

ples, which suggests that the region is highly discontinuous. Comparing this patch to

similar patches (branches against a sky) which were classified correctly shows that cor-

rectly classified patch histograms are more continuous (see figure 5.7).

Figure 5.7: Comparison of intensity histograms of a mis-classified image patch and some
semantically similar but correctly classified patches.

CHAPTER 5. TRAVERSAL DATA GENERATION 29

The comparison in Figure 5.7 above led to the hypothesis that images with a discontinuous

intensity are more likely to be mis-classified. It was assumed that the reason for this is due

to under-representation of these image types in the training data, which makes sense when

we consider the fact that the vehicle is rarely traversing the trees during the simulations.

To solve this issue labels were added to the training data which artificially increased the

representation of tree and sky images in the training data. This was achieved by using the

terrain data-set’s ground truth data to synthetically find and add random training labels to

the trees and sky in the terrain image, as shown below.

Figure 5.8: Artificial labels added to the training data to increase the representation of
tree and sky image patches

Adding these artificial labels did solve the issue of the mis-classification and made the

results more stable in general. This suggests that a system running on a real robot will

also suffer from the same problem, which means that a mechanism to artificial add labels

may be needed to run in parallel to the learning algorithm.

Chapter 6

Learning Traversability

This chapter outlines the neural network design and the process in which the terrain traver-

sal information was used to train the network to establish a relationship between the ter-

rain and the vehicle dynamics.

6.1 Network Design

The traversability labels which are generated from the vehicle-terrain interaction are sparse

across the terrain image because the labelling only occurs along thin paths (as seen in

Figure 5.3). This represents an interesting challenge as CNN’s are designed for dense

data across the image, and naively using sparse data does not work as the CNN is sen-

sitive to missing data (Jaritz et al., 2018). One terrain classification system, designed by

Wellhausen et al., 2019, solved this problem by applying the Mean Teacher algorithm

(Tarvainen and Valpola, 2017) to their semantic segmentation CNN which accounts for

sparse labels by averaging the weighting.

However, to deal with the sparse labelling issue in this project the image was cropped

into discrete labelled patches (as shown in Figure 5.4 above) which could be classified,

30

CHAPTER 6. LEARNING TRAVERSABILITY 31

rather than using semantic segmentation of the full image with a sparse label algorithm

(as discussed above). Although labelling patches loses some of the image semantics and

is less efficient, it was chosen as it is much simpler to implement than the alternative

and can be applied to any size of image. The use of semantic segmentation with sparse

labelling algorithms would be a useful future addition to this architecture.

The CNN architecture is based upon a height map classifier designed by Chavez-Garcia

et al., 2017 which uses a Keras (Chollet et al., 2015) front end and TensorFlow backend

(Martin Abadi et al., 2015). This is a standard CNN structure which is well suited for

image feature recognition (the exact architecture can be seen below in Figure 6.1). The

architecture uses stacked convolutional, max-pooling and fully connected layers which

are all activated using ReLU functions. This arrangement allows features of the images

to be extracted using kernal convolution filters at multiple levels of abstraction, which are

then used as inputs to a fully connected artificial neural network.

The CNN was modified to use 100 pixel RGB and depth images input images and three

traversability classes as outputs.

Figure 6.1: Covolutional Neural Network architecture

6.2 Training

As mentioned in the Traversal Data Generation section, there were a total of 52,000 train-

ing samples generated from the simulations. This data was first randomly mixed and then

CHAPTER 6. LEARNING TRAVERSABILITY 32

split into training (80%) and testing (20%) sets. Class weights were then calculated for

each class because the majority of the traversability images were of the non-traversable

class. Initial testing without the weighted classes found that the results were very biased

towards one class.

The parameter weights of the CNN were learned with back propagation by minimising the

categorical cross entropy loss function with the adadelta optimiser. The adadelta optimiser

uses an adaptive learning rate method which was able to deal with with the sparse classes

of the traversability data set. An optimiser batch size of 64 was chosen as it was found to

have the best balance of accuracy and training speed out of the conventional batch sizes

of 32, 64, 128 and 256.

The model accuracy and loss metrics, of the training and testing sets, were used to mon-

itor the CNN training progress. The accuracy gives a good indication of the difference

between the predicted output and the desired output of the model, which is useful when

assessing overall performance. The loss function generates a model error value which is

used by the optimiser to find the global minimum, and as such, it serves as a useful metric

to assess the optimisation progress and model stability.

Figure 6.2: CNN training loss and accuracy

The model was trained for 70 epochs before the accuracy and loss began to plateau at

an accuracy of around 70% (see Figure 6.2). The loss shows a slow decline with very

CHAPTER 6. LEARNING TRAVERSABILITY 33

little instability as training progresses which suggests that the optimiser is successfully

converging. It is observed that the testing accuracy tracks the training accuracy fairly

well which may indicate that the model capacity is not high enough, and an increase in

parameters (added layers) could allow a higher accuracy to be acheived in the future.

The training was carried out using the Google Colab cloud computing service (Google,

2018) which use GPUs or TPUs for artificial intelligence applications. The computing

time varied depending upon the time of day and available service, but in general took

around 450 seconds per epoch (690m/s per step) - so for the final training run it took

around 9 hours to train from scratch.

6.3 Addressing Over Fitting

It was observed that the model was suffering from strong over-fitting for the first few

model iterations which used a smaller training set (one third the size of the final data set

used in Figure 6.2). This was occurring because training set was too small and the model

was becoming too biased towards the training set and losing generality. The spread in

accuracy and loss between the training and testing sets is a classic symptom of this, as

seen in Figure 6.3 below.

Figure 6.3: Over fitting CNN training loss and accuracy

CHAPTER 6. LEARNING TRAVERSABILITY 34

The over fitting in later models was prevented in part by proper randomisation of the data

samples and use of models that had been trained using fewer epochs (before over-fitting

occurred). But the main fix for the over fitting was to increase the training set size by a

factor of 3, which was used to eventually train the final model shown in Figure 6.2.

6.4 Patch size tuning

The performance of the CNN was very sensitive to the size of the training patch which

was cropped from the terrain image (as discussed in the Terrain Patch Labelling section).

If the patch was too small then some of the wider semantics of the terrain were lost and if

it was too large then there was mis-classification at class boundaries.

Figure 6.4: Training patches (cropped from terrain images) size comparison. Small
patches lose some of the wider image semantics, and large patches can mis-represent
class boundaries

CHAPTER 6. LEARNING TRAVERSABILITY 35

It was found after some experimentation that the CNN performs best when it is trained us-

ing 100 pixel patches. This size was found to be accurate across the image as a whole and

had an acceptable accuracy at the class boundaries. This compromise could be avoided in

the future by adopting a semantic segmentation architecture, as discussed in the Network

Design section above.

Chapter 7

Results and Discussion

This chapter details the output and performance of the learning architecture after the CNN

was trained using the vehicle-terrain interaction data set which was collected from simula-

tions. Additionally an example of a potential path planning application of the framework

is presented.

7.1 Uniform Friction Terrain

The first vehicle-terrain interaction simulation data that was used for training the CNN

assumed uniform friction terrain. Doing this allowed the effects of terrain shape and

terrain friction on the vehicle behaviour to be isolated and assessed individually. The

friction plugin (see section 4.4) in the simulator was set so that any surface collision

assumed that the friction coefficient was 1.0 between the vehicle and the terrain.

Simulation data for 366 individual terrain meshes and around 13 km of driving on uniform

friction terrain was used to train the CNN. The output of the CNN when applied to test

images can be observed in Figure 7.1 below.

36

CHAPTER 7. RESULTS AND DISCUSSION 37

(a) Input image (b) Traversability Class (c) Class confidence

Figure 7.1: Traversal prediction results of CNN trained with simulation data for uniform
friction. Class colour: Green = fast traversal, yellow = slow traversal, red = un-traversable.
Confidence colour: white = high, black = low

CHAPTER 7. RESULTS AND DISCUSSION 38

The system has successfully divided the terrain into traversable and un-traversable classes,

and in almost all cases the trees and shrubs are classed as un-traversable and the road is

classed as traversable, just as was found in the simulation data. Transition areas are also

frequently predicted as slow, such as between grass and road, and between vegetation

and grass. These are areas which typically have low class confidence and are moderately

sloped (for example ruts on the sides of roads).

These results only indicate the effect of terrain shape on the vehicle’s dynamics, so, while

being somewhat useful, they are limited because they make no distinction between the

effect of terrain textures, such as the surface or texture. This issue is addressed in the

following section with the introduction of terrain friction.

7.2 Variable Friction Terrain

After the performance of the CNN was assessed for a uniform friction terrain the friction

was varied in the simulation. This allowed the effect of terrain slip in the simulations to

be isolated from the effect of terrain shape. The friction model was changed to use the

following values:

Table 7.1: Terrain friction coefficient values used in the simulation

Terrain Sky* Vegetation Tree* Grass Road Obstacle*

Friction µ 0.001 0.01 0.001 0.10 0.72 0.001

These friction values were loosely chosen from car tyre friction coefficient values over

various terrains from the Engineering Toolbox (EngineeringToolBox, 2014), but it should

be stressed that these friction values are arbitrary and intended as a proof of concept.

The results after training the CNN with variable friction data are observed in Figure 7.2.

*The sky, tree and obstacle used a very low friction rather than zero to avoid undefined simulation values

CHAPTER 7. RESULTS AND DISCUSSION 39

(a) Input image (b) Traversability Class (c) Class confidence

Figure 7.2: Traversal prediction results of CNN trained with simulation data with friction
varied across the terrain. Class colour: Green = fast traversal, yellow = slow traversal, red
= un-traversable. Confidence colour: white = high, black = low

CHAPTER 7. RESULTS AND DISCUSSION 40

Varying the friction across the terrain in the simulations has changed the CNN’s prediction

behaviour significantly from the uniform case. This suggests that the terrain simulation’s

friction model is successfully biasing the traversal results, and the self-supervised learning

architecture is successfully learning it’s environment.

The only regions predicted as fast traversal are roads and particularly flat grass patches. In

most cases grass is predicted as slow traversal due to it’s low coefficient of friction. The

class confidence was found to be very low on the grassy regions, this is likely because

the traversal data on grass is close to the class threshold between slow and fast. It is also

observed on the fourth image down of Figure 7.2 that the class confidence is very low for

snow on the ground, this is likely because snow is very under-represented in the data set.

7.3 CNN Performance

Since this system’s intended use is for real-time robotics applications which utilise self-

supervised learning, the performance of the CNN and the training properties were consid-

ered important design factors. The training and prediction would eventually have to take

place on-board a robot, so computational efficiency will have reaching effects.

The CNN itself is not particularly deep nor complex, so the training time was not partic-

ularly large. The training time of a model from scratch was found to be around 9 hours

using Google Colab (as mentioned above in section 6.2). It is expected that this computa-

tion time will be much lower when the model weights are pre-trained using a simulation

environment, and then updated in situ as new terrain data is collected.

The CNN prediction time was recorded using a PC with an Nvidia GTX 660Ti GPU run-

ning Python 3. The system swept through the terrain image in steps sizes of 10 pixels and

extracted the training patch for each step, this took around 15 seconds to collect an av-

erage 1500 patches per image. These patches were then evaluated using the CNN which

CHAPTER 7. RESULTS AND DISCUSSION 41

took a further 5 seconds. This performance is clearly not suitable for real time applica-

tions, and would require a large efficiency improvement such as patch prioritisation or the

use of a semantic segmentation architecture.

7.4 Path Planning Example

A path planning example is presented to demonstrate how the traversability data collected

from this framework could be used further down the pipeline. A simple Dijkstra algorithm

is used which plans the shortest path to a goal position with traversability weightings

applied between the node points.

Figure 7.3: Dijkstra path planning algorithm with terrain traversability used as weightings
between the graphs nodes.

The agent avoided the shortest route to the goal, which would involve crossing a slow

patch of grass and road edge, in favour of staying on the road for as far as possible before

crossing the grass to it’s end goal. This behaviour can be easily tuned by weighting the

traversability function.

Path planning is the most obvious use of this traversability knowledge, but other examples

include energy conservation, danger avoidance and decision making.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis presented a self-supervised framework which learns vehicle-terrain interac-

tions from experience. The relationship between the terrain and vehicle data, the so called

’traversability’, was learned using a convolutional neural network (CNN). This learned re-

lationship could be used to accurately predict the traversability of future terrains, which

was found to be particularly useful for navigation tasks such as path planning.

A comparison was made between a framework trained using a uniform friction environ-

ment and a varied friction environment. This comparison illustrated that the classifier

changes behaviour substantially as it’s traversal environment changes. This characteristic

is crucial for a system which is to adapt to it’s terrain.

A method to generate simulated training environments from a real terrain data set was

presented, which allowed the system to be pre-trained using real imagery and simulated

vehicle dynamics, thus reducing the cost and safety issues of using a robot to learn from

scratch.

42

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 43

8.2 Limitations and Future Work

There were a number of framework design issues identified which, if rectified, could

expand the system’s functionality significantly:

Online learning - The system currently only learns from a static training set and

cannot learn dynamically as new data arrives. The addition of some mechanism to

update the CNN incrementally as more data arrives would make the system more

robust and capable of adapting to new environments on the fly.

Additional vehicle dynamics - The current system only learns the vehicle-terrain

interaction for a vehicle at a constant speed and direction. The addition of the

vehicle dynamics as an input to the CNN would allow the effect of vehicle states

and configurations on the terrain traversability to be predicted.

More terrain classes - The traversal classification only used 3 discrete classes,

which is not very useful for optimisation based tasks such as path planning. This

classification could be more versatile if it used a higher resolution of classes or,

better yet, a continuous class calculated from a regression CNN.

Improved traversability calculation - The traversability is calculated using only

the vehicle’s tilt and slip, which are rarely the only factors which constrain a vehicle

over rough terrain. Some additional parameters could be added to its definition

(suggested by Papadakis, 2013) - ground clearance, zero moment point distance,

force-angle stability measure, distance stability margin or traction efficiency

Although this training framework is intended as pre-training for a real system, there are

still several issues with using a simulation for the initial training:

Addition of noise - There is no noise or randomness assumed in the simulations,

which can easily cause machine learning models to learn the simulation rather than

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 44

a robust and generalised model. The full extent of this effect will only be known

when the model is deployed on a real system, but steps can be taken to make the

model more robust, for example, artificial noise could be added to the simulations.

Safer learning maneuvers - Another issue with simulation based learning is that

the system learns a lot from getting trapped or flipped in the simulation, but the

same cannot be practically achieved for a real robot, especially when it is exploring

a remote place such as Mars. To tackle this, the simulation could be modified to do

the bulk of it’s learning from safer maneuvers.

For the system to be to be successfully deployed on a real robot a number of design

modifications would be required:

Real time classification - The current classifier takes around 20 seconds in total

to divide an image into patches and classify each patch, which is an un-acceptable

length of time for a robot operating in real time. To reduce the computation time

it is expected that a CNN which uses a full image input would be required, such as

semantic segmentation (as discussed in the Network Design section).

SLAM for labelling images - The simulation learning architecture knows the dis-

placement between the previous camera position and present vehicle position at all

points in time which allows the terrain images to be easily labelled, the same can-

not be said for a real system. Some form of SLAM or Odometry would be required

which can map the current vehicle position onto previous images of the terrain.

Unknown objects - The traversability classifier makes a prediction for all objects

in the image regardless of the semantics. This works fine for terrains which are

reasonably homogeneous such as forests and fields, but quickly breaks down in

highly novel terrains with a lot of unusual objects such as urban environments.

Some mechanism is therefore required which identifies features which the CNN is

unsure about, and indicates that the agent should proceed with caution.

References

Angelova, Anelia et al. (2007). “Learning and prediction of slip from visual information”.
In: Journal of Field Robotics 24.3, pp. 205–231. DOI: 10 .1002 / rob.20179. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20179. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/rob.20179.

Bo, Liefeng and Kevin Lai (2014). RGB-D (Kinect) Object Dataset. URL: https://rgbd-
dataset.cs.washington.edu/software.html.

Chavez-Garcia, R. Omar et al. (2017). “Learning Ground Traversability from Simula-
tions”. In: CoRR abs/1709.05368. arXiv: 1709.05368. URL: http://arxiv.org/abs/1709.
05368.

Chollet, François et al. (2015). Keras. https://keras.io.

Cignoni, Paolo et al. (2008). “MeshLab: an Open-Source Mesh Processing Tool”. In: Eu-
rographics Italian Chapter Conference. Ed. by Vittorio Scarano, Rosario De Chiara,
and Ugo Erra. The Eurographics Association. ISBN: 978-3-905673-68-5. DOI: 10 .
2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.

Cole, Michael et al. (2019). “Are M&S Tools Ready for Assessing Off-road Mobility of
Autonomous Vehicles?” In:

EngineeringToolBox (2014). Friction and Friction Coefficients. URL: https://www.engineeringtoolbox.
com/friction-coefficients-d 778.html.

Garcia Bermudez, F. L. et al. (2012). “Performance analysis and terrain classification for
a legged robot over rough terrain”. In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 513–519.

Gazebo-Tutorials (2015a). Tutorial: Friction. URL: http://gazebosim.org/tutorials?tut=
friction.

— (2015b). Tutorial: Using Gazebo plugins with ROS. URL: http : / / gazebosim . org /
tutorials?tut=ros gzplugins.

Google (2018). Google Colaboratory. URL: https://colab.research.google.com/notebooks/
intro.ipynb?utm source=scs-index#scrollTo=5fCEDCU qrC0.

45

https://doi.org/10.1002/rob.20179
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20179
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20179
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20179
https://rgbd-dataset.cs.washington.edu/software.html
https://rgbd-dataset.cs.washington.edu/software.html
https://arxiv.org/abs/1709.05368
http://arxiv.org/abs/1709.05368
http://arxiv.org/abs/1709.05368
https://keras.io
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
http://gazebosim.org/tutorials?tut=friction
http://gazebosim.org/tutorials?tut=friction
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials?tut=ros_gzplugins
https://colab.research.google.com/notebooks/intro.ipynb?utm_source=scs-index#scrollTo=5fCEDCU_qrC0
https://colab.research.google.com/notebooks/intro.ipynb?utm_source=scs-index#scrollTo=5fCEDCU_qrC0

REFERENCES 46

Helmick, Daniel, Anelia Angelova, and Larry Matthies (2009). “Terrain Adaptive Navi-
gation for planetary rovers”. In: Journal of Field Robotics 26.4, pp. 391–410. DOI: 10.
1002/rob.20292. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20292.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20292.

Howard, Andrew et al. (2006). “Towards learned traversability for robot navigation: From
underfoot to the far field”. In: Journal of Field Robotics 23.11-12, pp. 1005–1017.
DOI: 10.1002/rob.20168. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.
20168. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20168.

Howard, Ayanna and Homayoun Seraji (2001). “Vision-based terrain characterization and
traversability assessment”. In: Journal of Robotic Systems 18.10, pp. 577–587. DOI:
10.1002/rob.1046. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.1046.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.1046.

Jackel, L. D. et al. (2006). “The DARPA LAGR program: Goals, challenges, methodol-
ogy, and phase I results”. In: J. Field Robotics 23, pp. 945–973.

Jaillet, L., J. Cortés, and T. Siméon (2010). “Sampling-Based Path Planning on Configuration-
Space Costmaps”. In: IEEE Transactions on Robotics 26.4, pp. 635–646.

Jain, A. et al. (2004). “Recent developments in the ROAMS planetary rover simula-
tion environment”. In: 2004 IEEE Aerospace Conference Proceedings (IEEE Cat.
No.04TH8720). Vol. 2, 861–876 Vol.2.

Jakobi, Nick, Phil Husbands, and Inman Harvey (Jan. 1995). ““Noise and the Reality
Gap: The Use of Simulation in Evolutionary Robotics,””. In: vol. 929, pp. 704–720.

Jaritz, Maximilian et al. (2018). Sparse and Dense Data with CNNs: Depth Completion
and Semantic Segmentation. arXiv: 1808.00769 [cs.CV].

Kahn, Gregory, Pieter Abbeel, and Sergey Levine (2020). BADGR: An Autonomous Self-
Supervised Learning-Based Navigation System. arXiv: 2002.05700 [cs.RO].

Koenig, Nathan and Andrew Howard (2004). “Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. Sendai, Japan, pp. 2149–2154.

Leppanen, I. M., P. J. Virekoski, and A. J. Halme (2008). “Sensing terrain parameters
and the characteristics of vehicle-terrain interaction using the multimode locomotion
system of a robot”. In: 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 500–505.

Martin Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. URL: http://tensorflow.org/.

Maturana, Daniel et al. (Jan. 2018). “Real-Time Semantic Mapping for Autonomous Off-
Road Navigation”. In: pp. 335–350. ISBN: 978-3-319-67360-8. DOI: 10.1007/978-3-
319-67361-5 22.

https://doi.org/10.1002/rob.20292
https://doi.org/10.1002/rob.20292
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20292
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20292
https://doi.org/10.1002/rob.20168
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20168
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20168
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20168
https://doi.org/10.1002/rob.1046
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.1046
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.1046
https://arxiv.org/abs/1808.00769
https://arxiv.org/abs/2002.05700
http://tensorflow.org/
https://doi.org/10.1007/978-3-319-67361-5_22
https://doi.org/10.1007/978-3-319-67361-5_22

REFERENCES 47

Moravec, H. and A. Elfes (1985). “High resolution maps from wide angle sonar”. In: Pro-
ceedings. 1985 IEEE International Conference on Robotics and Automation. Vol. 2,
pp. 116–121.

NASA (2010). NASA to Begin Attempts to Free Sand-Trapped Mars Rover. URL: https:
//www.nasa.gov/mission pages/mer/news/mer20091112.html.

Otsu, K. et al. (2016). “Autonomous Terrain Classification With Co- and Self-Training
Approach”. In: IEEE Robotics and Automation Letters 1.2, pp. 814–819.

Pandas (2020). Pandas.Dataframe. URL: https://pandas.pydata.org/pandas-docs/stable/
reference/api/pandas.DataFrame.html.

Papadakis, Panagiotis (2013). “Terrain traversability analysis methods for unmanned ground
vehicles: A survey”. In: Engineering Applications of Artificial Intelligence 26.4, pp. 1373–
1385. ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2013.01.006. URL:
http://www.sciencedirect.com/science/article/pii/S095219761300016X.

ROS-wiki (2017). Pioneer 3-at. URL: https://robots.ros.org/pioneer-3-at/.

Rosique, Francisca et al. (Feb. 2019). “A Systematic Review of Perception System and
Simulators for Autonomous Vehicles Research”. In: Sensors 19.3, p. 648. ISSN: 1424-
8220. DOI: 10.3390/s19030648. URL: http://dx.doi.org/10.3390/s19030648.

Shneier, Michael et al. (Nov. 2008). “Learning traversability models for autonomous mo-
bile vehicles”. In: Auton. Robots 24, pp. 69–86. DOI: 10.1007/s10514-007-9063-6.

Stanford Artificial Intelligence Laboratory et al. (May 23, 2018). Robotic Operating Sys-
tem. Version ROS Melodic Morenia. URL: https://www.ros.org.

Tarvainen, Antti and Harri Valpola (2017). “Weight-averaged consistency targets im-
prove semi-supervised deep learning results”. In: CoRR abs/1703.01780. arXiv: 1703.
01780. URL: http://arxiv.org/abs/1703.01780.

Valada, Abhinav et al. (2016). “Deep Multispectral Semantic Scene Understanding of
Forested Environments using Multimodal Fusion”. In: International Symposium on
Experimental Robotics (ISER).

Wellhausen, L. et al. (2019). “Where Should I Walk? Predicting Terrain Properties From
Images Via Self-Supervised Learning”. In: IEEE Robotics and Automation Letters
4.2, pp. 1509–1516.

https://www.nasa.gov/mission_pages/mer/news/mer20091112.html
https://www.nasa.gov/mission_pages/mer/news/mer20091112.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://doi.org/https://doi.org/10.1016/j.engappai.2013.01.006
http://www.sciencedirect.com/science/article/pii/S095219761300016X
https://robots.ros.org/pioneer-3-at/
https://doi.org/10.3390/s19030648
http://dx.doi.org/10.3390/s19030648
https://doi.org/10.1007/s10514-007-9063-6
https://www.ros.org
https://arxiv.org/abs/1703.01780
https://arxiv.org/abs/1703.01780
http://arxiv.org/abs/1703.01780

	List of Figures
	List of Tables
	Abbreviations
	Notation
	1 Introduction
	2 Literary Review
	3 Approach
	4 Traversal Simulation
	5 Traversal Data Generation
	6 Learning Traversability
	7 Results and Discussion
	8 Conclusions and Future Work
	References

